Editorial

Postoperative hyponatraemic encephalopathy following elective surgery in children

ALLEN I. ARIEFF MD
Department of Medicine, University of California School of Medicine, San Francisco, CA, USA

Introduction

In the United States, there are an estimated 15 000 deaths per year as a consequence of postoperative hyponatraemia (1) (Figure 1). There have been a number of recent studies which have described postoperative hyponatraemic encephalopathy with death or permanent brain damage (2–6). From these studies, it appears that brain damage associated with postoperative hyponatraemic encephalopathy primarily affects menstruant women (1) and prepubertal children (6).

Postoperative hyponatraemic encephalopathy in prepubertal children

There are multiple reports of prepubertal children suffering brain damage from postoperative hyponatraemic encephalopathy (6–9). The aetiology of the hyponatraemia usually involves a combination of: a) intravenous hyponatraemic fluids; b) elevated plasma antidiuretic hormone (ADH); c) respiratory insufficiency secondary to hyponatraemic encephalopathy. It has been demonstrated in several series that plasma levels of ADH (vasopressin, antidiuretic hormone) are elevated in virtually every postoperative child (7,10–13). If such patients are given intravenous free water (any solution with a sodium concentration below 140 mmol·l\(^{-1}\)), there will always be a tendency towards postoperative hyponatraemia (14). When compared with other groups, prepubertal children are far more susceptible to brain damage from hyponatraemia than are adults (6), and recent experimental evidence demonstrates why this may be the case.

Effects of hyponatraemia on the paediatric central nervous system

Nattie & Edwards (15) studied the effects of acute hyponatraemia on the brain of puppies. They found that acute lowering of plasma sodium from 140 to 120 mmol·l\(^{-1}\) resulted in severe hypoxaemia (arterial P\(_{O_2}\) fell from 11.4–6.9 kPa (88 to 53 mmHg)) and cerebral oedema. In contrast to adults, the brains of paediatric animals (three day old puppies and neonatal rats) were unable to adapt to hypo-osmotic stress by extrusion of cation (15,16).

Adaptation of the brain to hyponatraemia occurs as a consequence of the following sequence of events. First, hyponatraemia leads to a movement of water into brain cells as a result of osmotic forces. In addition, vasopressin which is usually elevated in the plasma of hyponatraemic patients (17) may lead to a direct movement of water into brain cells independent of the effects of hyponatraemia (18). The early response of the brain to this hyponatraemia-mediated oedema is the loss of blood and cerebrospinal fluid, followed by extrusion of sodium from brain cells by several pathways (19). Loss of potassium and possibly organic osmolytes follows later, in an attempt to decrease brain cell osmolality without a gain of water (20).

Effects of hormones and physical factors on brain adaptation to hyponatraemia

There is a significantly higher intracellular brain water content in prepubertal rats in comparison with adult rats, suggesting that the brain occupies a greater percent of the available intracranial volume in young rats (16). Such physical factors may be important determinants of outcome in hyponatraemic rats. As individuals age, there is a progressive decline in the volume of brain, while skull size remains constant in adult life (21). Thus, elderly individuals of both...
the brain (18), a significant decline in brain synthesis of ATP (29), and a decline of brain pH (29,30). Vasopressin also impairs the function of several important adaptive pathways to hyponatraemia (31,32).

Recent studies have demonstrated that the brains of prepubertal rats are unable to adapt to hyponatraemia (16). The greater mortality with hyponatraemia in prepubertal rats is associated with a greater accumulation of water in the intracellular space of the brain than in rats belonging to other age groups, as well as an inability of the prepubertal brain to extrude sodium from brain cells. The baseline intracellular sodium content in the prepubertal rats was greater by almost 50% than in control adult rats, a finding consistent with previous studies in newborn dogs (15,33).

Figure 1
In nine published series from our laboratory comprising 847 hospitalized patients with postoperative hyponatraemia, 19% (158/847) developed hyponatraemic encephalopathy and 117 developed permanent brain damage or died. The major risk factors associated with permanent brain damage in these 117 patients with hyponatraemic encephalopathy are shown. Most patients (96%) suffered an hypoxic episode because of failure to initiate active therapy in a timely manner. In 4% of patients suffering permanent brain damage, improper therapy for hyponatraemia was implicated in the outcome.

Biochemical differences in paediatric vs adult brain with hyponatraemia

There are several possible reasons for the increased brain intracellular sodium in prepubertal rats. The Na\(^+\)-K\(^+\) ATPase system appears to be the major early adaptive pathway for extrusion of sodium from brain cells during hyponatraemia (19,34) and its impairment results in decreased ability to pump sodium out of the brain. In prepubertal rats, the brain Na\(^+\)-K\(^+\) ATPase activity is significantly lower than that observed in adults, both in vitro (35) and in vivo (36). Coupled with the higher brain sodium, these differences may reflect a limited ability to pump sodium out of the prepubertal brain. The increased intracellular sodium content may be a consequence of limited cerebral Na\(^+\)-K\(^+\) ATPase function in young rats compared to adults. The decreased cerebral Na\(^+\)-K\(^+\) ATPase activity may be responsible for the impaired adaptation to hyponatraemia in prepubertal rats. Testosterone stimulates Na\(^+\)-K\(^+\) ATPase activity in rat brain (37,38). Pretreatment of prepubertal rats with testosterone resulted in a significant decrease in the brain intracellular content of both sodium and water while also reducing the mortality associated with acute hyponatraemia from 84% to zero (16).

Clinical effects of hyponatraemia in children vs adults

If one can extrapolate the above experimental findings to paediatric patients, then the implications would be that children are more susceptible to brain damage from postoperative hyponatraemia than are adults. The reasons include: a) decreased available
room for swelling of the paediatric brain in the rigid skull, leading to a propensity for brain herniation with what might appear to be a small decrement of plasma sodium (39); b) impaired ability of the paediatric brain to adapt to hyponatraemia when compared with adults (15,37); c) severe systemic hypoxaemia secondary to respiratory insufficiency frequently occurs in children with only modest hyponatraemia (6,15,39). The respiratory insufficiency is a consequence of increased intracranial pressure (3).

Gomola et al. have described a prepubertal (10 years old) female child with middle face hypoplasia who underwent elective maxillary reconstruction (40). The surgery went well and postoperatively, she was given primarily free water intravenously (280 mM glucose in 51 mM NaCl) at a rate of 2 l per day. The child weighed 30 kg with estimated total body water of 18.5 l. On the first postoperative day, the child became confused and developed headache and vomiting. Renal function was apparently normal on the basis of normal plasma urea and creatinine. The plasma sodium was found to be 117 mmol·l⁻¹. She was initially treated with sodium supplementation, but on the second post-operative day, the plasma sodium was still low at 120 mmol·l⁻¹. The urine and plasma osmolalities were 342 and 255 mOsm·kg⁻¹. An MRI of the brain was normal. The authors proposed three possible explanations for the hyponatraemia: a) dilutional hyponatraemia secondary to IV hypertonic fluid; b) pituitary insufficiency; c) inappropriate secretion of ADH. Pituitary insufficiency was ruled out by normal values for ACTH, cortisol, thyroid hormone and growth hormone. The ADH was 4 to 5 pg·ml⁻¹, which is ‘normal’ but inappropriately high for the extracellular hypoosmolality (41) and is essentially a universal finding in both paediatric and adult postoperative patients (7–13). The child received 2 l per day of hypotonic IV fluid in the presence of elevated plasma ADH. Although neither initial plasma sodium, urine output or total volume of IV fluids are provided, given the child’s weight and rate of infusion, the plasma sodium of 117 mmol·l⁻¹ appears very likely to have been the consequence of retention of about 3 l of IV hypotonic fluid over two days (6). The expression inappropriate secretion of ADH (SIADH) was originally used for elevated plasma ADH related to lung cancer (42) and has become a catch all term for virtually any patient with elevated plasma ADH. In particular, postoperative patients as well as those with heart failure or hepatic cirrhosis have elevated plasma ADH levels but are functionally hypovolaemic as well (41). Postoperative subjects are functionally hypovolaemic, so that the term SIADH may not be appropriate in this patient (11). There is also a perception that ADH, and by association SIADH, can somehow lower the plasma sodium. Although ADH leads to increased retention of ingested or infused water, in the absence of increased water intake, ADH by itself will have no effect upon the plasma sodium. Thus, the most likely explanation for the hyponatraemia in this patient is infusion of hypotonic fluid (51 mM NaCl/280 mM glucose) in the presence of the expected postoperative increase in plasma ADH. Adrenal insufficiency is ruled out by the normal plasma cortisol and the fact that she remained normal for six months without any steroid replacement therapy. Exactly why the plasma sodium rose following IV hydrocortisone is uncertain, but may have been related to the expected decline of ADH values to normal after four to five postoperative days. Pituitary insufficiency is ruled out by normal values for ACTH, IGF1 and growth hormone.

Symptomatic postoperative hyponatraemia carries a mortality of at least 15% (43), particularly in children and respiratory arrest is a frequent occurrence, but once this complication occurs, the morbidity is substantial (6,7). There is no obvious rationale for the administration of hypotonic fluid to a postoperative patient, unless the individual is hypernatraemic (14). If the patient becomes symptomatic, therapy with hypertonic NaCl is indicated (39). The syndrome can be prevented by administration of primarily isotonic fluids to postoperative patients.

Acknowledgements

Supported by a grant RO1 AG 08575 from the National Institute on Aging, Department of Health and Human Services, Bethesda, MD, USA.

References


34 Fraser CL, Sarnaik P. Na−K+ ATPase pump function in male rat brain synaptosomes is different from that of females. Amer J Physiol 1989; 257 (Endocrin Metab 20): E284–E289.

35 Matsuda T, Shimizu I, Baba A. Postnatal change in a Ca2+ pump: F113±F119.


